Design Guidelines for Anisotropic Conductive Adhesive Assemblies in Microelectronics Packaging
نویسندگان
چکیده
Multiple parameters are involved in the design of anisotropic conductive adhesive assemblies, and the overlapping influences that they have on the final electrical contact resistance represent a difficult challenge for the designers. The most important parameters include initial bonding force F, number of particles N, the adhesion strength GA, and modulus of elasticity E of the cured resin. It is well known that as the bonding force increases, the contact resistance decreases. However, when the bonding force reaches a certain maximum value, the contact between conductive particle and conductive track is disrupted due to delamination of the cured resin during the elastic recovery. The authors have shown in previous studies that the delamination is caused by high residual stresses and that it largely depends on the adhesion strength of the assembly and on the modulus of elasticity of the cured resin. Additionally, the authors have provided a methodology to quantify the maximum threshold value of the bonding force for different numbers of particles trapped between mating conductive tracks. In this paper, the relationships between contact resistance R and each one of these parameters are systematically investigated to create diagrams that give regions of robust design. Given the number of particles and their size, adhesion strength, and modulus of elasticity of the resin, the required bonding force can be found in order to achieve a desired range in contact resistance. DOI: 10.1115/1.2912180
منابع مشابه
Study of anisotropic conductive adhesive joint behavior under 3-point bending
Flip chip interconnections using anisotropic conductive film (ACF) are now a very attractive technique for electronic packaging assembly. Although ACF is environmentally friendly, many factors may influence the reliability of the final ACF joint. External mechanical loading is one of these factors. Finite element analysis (FEA) was carried out to understand the effect of mechanical loading on t...
متن کاملVarious Adhesives for Flip Chips
Flip chips using various adhesives were studied. The assembly yields using nonconductive adhesive and anisotropic conductive film investigated were 97% and 100%, respectively. A packaging process using anisotropic conductive paste with a 100% packaging yield was developed. All the packages passed various reliability tests such as burn in, artificial sweat and humidity tests, and temperature cyc...
متن کاملSuper Thin Flip Chip Assemblies on Flex Substrates - Adhesive Bonding and Soldering Technology – Reliability Investigations and Applications
Thinned silicon chips with very thin bumps (5-7μm) mounted on flexible substrates open up new dimensions in packaging technologies. The use of flexible substrates enables a large variety of geometric possibilities including folding and bending. Conventional flip chip technology using pick&place and standard reflow processes is not suitable for the assembly of ultra thin components. This is base...
متن کاملEffect of autoclave test on anisotropic conductive joints
This paper reports that the stress-corrosion cracking induced by autoclave test condition reduces the mechanical strength of anisotropic conductive joints and also increases the contact resistance by allowing more moisture to reach the aluminium metallization. The use of anisotropic conductive joints with bumpless chips allows a reduction in the costs of the flip chip bonding process. The epoxy...
متن کامل